Countable Sets

Infinite sets are either:

- Countable
- Uncountable

Countable set:

There is a one to one correspondence between
elements of the set and positive integers

Example:

The set of even integers is countable

Even integers:
$0,2,4,6, \ldots$

Correspondence:

Positive integers:

$1,2,3,4, \ldots$

Example: The set of rational numbers is countable

Rational numbers:

Naive Approach
Rational numbers:

Correspondence:

$$
\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots
$$

Positive integers:

Doesn't work:
we will never count numbers with nominator 2

$$
\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \ldots
$$

Rational Numbers:

Correspondence:

Positive Integers:

$1,2,3,4,5, \ldots$

We proved:
the set of rational numbers is countable by giving an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a
Turing machine that generates any string of S in finite number of steps.
strings $s_{1}, s_{2}, s_{3}, \ldots \in S$

Enumeration Machine

Configuration

Time 0

Time t_{1}

q_{0}
q_{s}

Time t_{2}

$$
q_{S}
$$

Time t_{3}

A set is countable if there is an enumeration procedure for it

Example:

The set of all strings $\quad\{a, b, c\}^{+}$ is countable.

We will describe the enumeration procedure.

Naive procedure:
Produce the strings in lexicographic order:

a

$a a$
$a a a$

Doesn't work!
Strings starting with b will never be produce 21

Better procedure: Proper Order

Produce all strings of length 1

Produce all strings of length 2

Produce all strings of length 2

Theorem:

The set of all Turing Machines is countable.

Proof:
Any Turing machine is a finite string
Encoded with a sequence of 0's and 1's.

Find an enumeration procedure for the set of Turing Machine strings.

Enumeration Procedure:

Repeat

1. Generate the next string of 0 's and 1's in proper order
2. Check if the string defines a Turing Machine
if YES: print string on output
if NO: ignore string

Uncountable Sets

Definition:

A set is uncountable if it is not countable

Theorem:

Let S be an infinite countable set.

The powerset 2^{S} of S is uncountable.

The power set of natural numbers has the same cardinality as the set of real numbers. (Using the Cantor-Bernstein-Schröder theorem, it is easy to prove that there exists a bijection between the set of reals and the power set of the natura numbers).

Proof:

Since S is countable, we can write

$$
S=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}
$$

$$
\%
$$

Element of S

Elements of the powerset have the form:

$$
\begin{gathered}
\left\{s_{1}, s_{3}\right\} \\
\left\{s_{5}, s_{7}, s_{9}, s_{10}\right\}
\end{gathered}
$$

We encode each element of the power set

 with a string of 0's and 1's *Powerset element
$\left\{s_{1}\right\}$
$\left\{s_{2}, s_{3}\right\}$
$\left\{s_{1}, s_{3}, s_{4}\right\}$

Encoding

s_{1}	s_{2}	s_{3}	s_{4}

1	0	0	0	\cdots
0	1	1	0	\cdots
1	0	1	1	\cdots

*Cantor's diagonal argument

Let's assume the contrary, that the powerset is countable.

We can enumerate the elements of the powerset.

Powerset
element

Encoding

$$
\left.\begin{array}{ccccccc}
t_{1} & & 1 & 0 & 0 & 0 & 0 \\
& & & & & \\
t_{2} & & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Take the powerset element whose bits are the complements of the diagonal.

New element: 0011...
(Diagonal complement)

The new element must be some t_{i}

This is impossible:
The i-th bit must be the complement of itself.

We have contradiction!

Therefore the powerset is uncountable.

Theorem:
Let S be an infinite countable set.
The powerset 2^{S} of S is uncountable.

Application: Languages

Alphabet: $\{a, b\}$
Set of Strings:
$S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$
infinite and countable
Powerset: all languages

$$
\begin{gathered}
2^{S}=\{\{\lambda\},\{a\},\{a, b\}\{a a, a b, a a b\}, \ldots\} \\
L_{1} L_{2} L_{3} \quad L_{4} \quad \cdots
\end{gathered}
$$

uncountable

Languages: uncountable

Turing machines: countable

There are infinitely many more languages than Turing machines!

There are some languages not accepted by Turing Machines.

These languages cannot be described by algorithms.

Recursively Enumerable Languages
AND
Recursive Languages

42

Definition:
A language is recursively enumerable if some Turing machine accepts it.

Let L be a recursively enumerable language and M be the Turing Machine that accepts it.

For a string w :
if $\quad w \in L \quad$ then M halts in a final state
if $\quad w \notin L \quad$ then M halts in some state
or loops forever

Definition:

A language is recursive if some Turing machine accepts it and halts on any input string.

In other words:
A language is recursive if there is a membership algorithm for it

Let L be a recursive language

and M be the Turing Machine that accepts it.

For a string w :
if $w \in L$ then M halts in a final state.
if $w \notin L$ then M halts in a non-final state.

We will prove:

1. There is a specific language which is not recursively enumerable.
2. There is a specific language which is recursively enumerable but not recursive.

Non Recursively Enumerable

Recursively Enumerable

First we prove:

- If a language is recursive then there is an enumeration procedure for it.
- A language is recursively enumerable if and only if there is an enumeration procedure for it.

Theorem:

if a language L is recursive then there is an enumeration procedure for it.

Proof:

Enumeration Machine

Enumerates all
strings of input alphabet

Enumeration procedure

Repeat:
\tilde{M} generates a string w
M checks if $w \in L$
YES: print w to output
NO: ignore w

End of proof

Theorem:
if language L is recursively enumerable then there is an enumeration procedure for it.

Proof:

Enumeration Machine

NAIVE APPROACH

Enumeration procedure

Repeat: \tilde{M} generates a string w
M checks if $w \in L$
YES: print w to output
NO: ignore w

Problem: If $w \notin L$
machine M may loop forever

BETTER APPROACH

\tilde{M} generates first string w_{1}
M executes first step on w_{1}
$\tilde{M} \quad$ generates second string w_{2}
M executes first step on w_{2}
second step on w_{1}
\tilde{M} Generates third string $\quad w_{3}$

M executes first step on w_{3} second step on w_{2}
third step on
w_{1}

And so on............
$w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad \cdots$

Move

If for string w machine M halts in a final state then it prints w on the output.

Theorem:

If for language L
there is an enumeration procedure then L is recursively enumerable.

Proof:

Input Tape

Machine that accepts L

Enumerator
for L
Compare

Turing machine that accepts L

For input string w

Repeat:

- Using the enumerator, generate the next string of L
- Compare generated string with w If same, accept and exit loop

End of proof

Question:

This is not a membership algorithm. Why?

Answer:
The enumeration procedure may not produce strings in proper order

We have shown:
A language is recursively enumerable if and only if
there is an enumeration procedure for it.

A LANGUAGE WHICH
IS NOT
Recursively Enumerable

65

We search for a language that is not Recursively Enumerable.

This language is not accepted by any
Turing Machine.

Consider alphabet $\{a\}$

Strings:

a, aa, aaa, aaaa,...
$a^{1} a^{2} \quad a^{3} \quad a^{4} \quad \ldots$

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$
M_{1}, M_{2}, M_{3}, M_{4}, \ldots
$$

Example language accepted by \boldsymbol{M}_{i}

$$
\begin{aligned}
& L\left(M_{i}\right)=\{a a, a a a a, a a a a a a\} \\
& L\left(M_{i}\right)=\left\{a^{2}, a^{4}, a^{6}\right\}
\end{aligned}
$$

Alternative representation

$$
\begin{array}{ccccccc}
a^{1} & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} . \\
0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array} .
$$

$L\left(M_{i}\right)$	0	1	0

	a^{1}	a^{2}	a^{3}	a^{4}	\cdots
$L\left(M_{1}\right)$	0	1	0	1	\cdots
$L\left(M_{2}\right)$	1	0	0	1	\cdots
$L\left(M_{3}\right)$	0	1	1	1	\cdots
$L\left(M_{4}\right)$	0	0	0	1	\cdots

Consider the language

$$
L=\left\{a^{i}: a^{i} \in L\left(M_{i}\right)\right\}
$$

L consists of the 1 's on the diagonal

	a^{1}	a^{2}	a^{3}	a^{4}	\ldots
$L\left(M_{1}\right)$	0	1	0	1	\ldots
$L\left(M_{2}\right)$	1	0	0	1	\ldots
$L\left(M_{3}\right)$	0	1	1	1	\ldots
$L\left(M_{4}\right)$	0	0	0	1	\ldots
	$L=\left\{a^{3}, a^{4}, \ldots\right\}$				

Consider the language \bar{L}

$$
\begin{aligned}
& L=\left\{a^{i}: a^{i} \in L\left(M_{i}\right)\right\} \\
& \bar{L}=\left\{a^{i}: a^{i} \notin L\left(M_{i}\right)\right\}
\end{aligned}
$$

\bar{L} consists from of 0's on the diagonal
T

$$
\bar{L}=\left\{a^{1}, a^{2}, \ldots\right\}
$$

Theorem:
Language \bar{L} is not recursively enumerable.

Proof:

Assume on the contrary that
\bar{L} is recursively enumerable
There must exist some machine M_{k} that accepts \bar{L}

$$
L\left(M_{k}\right)=\bar{L}
$$

Question: $\quad M_{k}=M_{1}$?

Question: $\quad M_{k}=M_{2}$?

Question: $\quad M_{k}=M_{3}$?

Similarly:
 $M_{k} \neq M_{i} \quad$ for any $\quad i$

Because either:

$$
\begin{array}{lll}
a^{i} \in L\left(M_{k}\right) & \text { or } & a^{i} \notin L\left(M_{k}\right) \\
a^{i} \notin L\left(M_{i}\right) & & a^{i} \in L\left(M_{i}\right)
\end{array}
$$

Therefore the machine

The language \bar{L} is not recursively enumerable.

End of proof

Observation:

There is no algorithm that describes \bar{L}
(otherwise it would be accepted by a Turing Machine)

A Language
which is Recursively Enumerable and not Recursive

We want to find a language which

There is a
Turing Machine
that accepts
the language

The machine doesn't necessarily halt on any input

We will prove that the language

$$
L=\left\{a^{i}: a^{i} \in L\left(M_{i}\right)\right\}
$$

Is recursively enumerable but not recursive.

Theorem:

The language $L=\left\{a^{i}: a^{i} \in L\left(M_{i}\right)\right\}$ is recursively enumerable

Proof:

We will give a Turing Machine that accepts L

Turing Machine that accepts L

For any input string w

- Write $w=a^{i}$
- Find Turing machine M_{i}
(using the enumeration procedure for Turing Machines)
- Simulate M_{i} on input a^{i}
- If M_{i} accepts, then accept w

End of proof

Observation:

Recursively enumerable

$$
L=\left\{a^{i}: a^{i} \in L\left(M_{i}\right)\right\}
$$

Not recursively enumerable

$$
\bar{L}=\left\{a^{i}: a^{i} \notin L\left(M_{i}\right)\right\}
$$

(Thus, not recursive)

Theorem:
The language $L=\left\{a^{i}: a^{i} \in L\left(M_{i}\right)\right\}$
is not recursive.

Proof:

Assume on the contrary that L is recursive.
Then \bar{L} is recursive:
Take the Turing Machine M that accepts L
M halts on any input
If M accepts then reject
If M rejects then accept

Therefore:

$$
\bar{L} \quad \text { recursive }
$$

But we know:

\bar{L} not recursively enumerable thus, not recursive

CONTRADICTION!
Therefore, L is not recursive
End of proof

Non Recursively Enumerable

Recursively Enumerable

\bar{L}

