COUNTABLE SETS

Infinite sets are either:

Countable

Uncountable

Countable set:

There is a one to one correspondence between elements of the set and positive integers

n corresponds to

n -

Example:

The set of rational numbers is countable

Rational numbers:

$$\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots$$

Better Approach

. . .

Correspondence:

Positive Integers:

We proved:

the set of rational numbers is countable by giving an <u>enumeration procedure</u>

Definition Let S be a set of strings

An <u>enumeration procedure</u> for S is a Turing machine that generates any string of S in finite number of steps.

strings
$$s_1, s_2, s_3, \ldots \in S$$

Configuration

A set is countable if there is an enumeration procedure for it

Example:

The set of all strings $\{a,b,c\}^+$ is countable.

We will describe the enumeration procedure.

Naive procedure:

Produce the strings in lexicographic order:

а аа ааа

Doesn't work! Strings starting with b will never be produced.

Better procedure: Proper Order

Produce all strings of length 1

Produce all strings of length 2

Produce all strings of length 2

Produce strings:

Proper Order

Theorem:

The set of all Turing Machines is countable.

Proof:

Any Turing machine is a finite string Encoded with a sequence of 0's and 1's.

Find an enumeration procedure for the set of Turing Machine strings.

Enumeration Procedure: Repeat 1. Generate the next string of 0's and 1's in proper order 2. Check if the string defines a **Turing Machine** if YES: print string on output if NO: ignore string

Definition:

A set is uncountable if it is not countable

Theorem:

Let *S* be an infinite countable set.

The powerset 2^S of S is uncountable.

The power set of natural numbers has the same cardinality as the set of real numbers. (Using the Cantor–Bernstein–Schröder theorem, it is easy to prove that there exists a bijection between the set of reals and the power set of the natural numbers).

Proof: Since *S* is countable, we can write $S = \{s_1, s_2, s_3, \ldots\}$ Element of S

Elements of the powerset have the form: $\{s_1, s_3\}$ $\{s_5, s_7, s_9, s_{10}\}$

We encode each element of the power set with a string of 0's and 1's *					
	Encoding				
Powerset element	<i>s</i> ₁	<i>s</i> ₂	s ₃	s_4	•••
$\{s_1\}$	1	0	0	0	•••
$\{s_2, s_3\}$	0	1	1	0	•••
$\{s_1, s_3, s_4\}$	1	0	1	1	
• • •	••• *Cantor's diagonal argument				

Let's assume the contrary, that the powerset is countable.

We can enumerate the elements of the powerset.

Take the powerset element whose bits are the complements of the diagonal.

(Diagonal complement)

The new element must be some t_i

This is impossible:

The i-th bit must be the complement of itself.

We have contradiction!

Therefore the powerset is uncountable.

Theorem:

Let *S* be an infinite countable set.

The powerset 2^S of S is uncountable.

Application: Languages

Alphabet: $\{a,b\}$

Set of Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,\dots\}$$

infinite and countable

Powerset: all languages

$$2^{S} = \{\{\lambda\}, \{a\}, \{a,b\} \{aa,ab,aab\}, \ldots\}$$

$$L_{1} \quad L_{2} \quad L_{3} \qquad L_{4} \qquad \cdots$$

uncountable

39

Languages: uncountable

Turing machines: countable

There are infinitely many more languages than Turing machines!

There are some languages not accepted by Turing Machines.

These languages cannot be described by algorithms.

RECURSIVELY ENUMERABLE LANGUAGES AND RECURSIVE LANGUAGES

42

Definition:

A language is recursively enumerable if some Turing machine accepts it.

Let L be a recursively enumerable language and M be the Turing Machine that accepts it. For a string w: $w \in L$ then M halts in a final state if if $w \notin L$ then M halts in some state or loops forever 44

Definition:

A language is **recursive** if some Turing machine accepts it and halts on any input string.

In other words: A language is recursive if there is a membership algorithm for it Let L be a recursive language and M be the Turing Machine that accepts it.

For a string *w* :

if $w \in L$ then M halts in a final state.

if $w \notin L$ then M halts in a non-final state.

1. There is a specific language which is not recursively enumerable.

2. There is a specific language which is recursively enumerable but not recursive.

First we prove:

- If a language is recursive then there is an enumeration procedure for it.
- A language is recursively enumerable if and only if there is an enumeration procedure for it.

Theorem:

if a language L is recursive then there is an enumeration procedure for it.

Proof:

Enumeration Machine

Enumeration procedure Repeat: \dot{M} generates a string w M checks if $w \in L$ YES: print w to output NO: ignore w

End of proof

Theorem:

if language L is recursively enumerable then there is an enumeration procedure for it.

Proof:

Enumeration Machine

NAIVE APPROACH **Enumeration procedure** Repeat: \dot{M} generates a string w M checks if $w \in L$ YES: print w to output NO: ignore WProblem: If $w \notin L$ 55 machine *M* may loop forever

BETTER APPROACH

\widetilde{M} generates first string w_1

M executes first step on w_1

\widetilde{M} generates second string W_2

M executes first step on w_2 second step on w_1

\tilde{M} Generates third string w_3

M executes first step on w_3

second step on w_2

third step on w_1

And so on.....

If for string wmachine M halts in a final state then it prints w on the output.

Theorem:

If for language Lthere is an enumeration procedure then L is recursively enumerable.

Turing machine that accepts L

For input string *w*

Repeat:

• Using the enumerator, generate the next string of *L*

Compare generated string with *w* If same, accept and exit loop

End of proof

Question:

This is not a membership algorithm. Why?

Answer:

The enumeration procedure may not produce strings in proper order

We have shown:

A language is recursively enumerable if and only if there is an enumeration procedure for it.

A LANGUAGE WHICH IS NOT RECURSIVELY ENUMERABLE

We search for a language that is not Recursively Enumerable.

This language is not accepted by any Turing Machine.

Consider alphabet $\{a\}$

Strings: *a*, *aa*, *aaa*, *aaaa*, ...

$$a^1 a^2 a^3 a^4 \dots$$

67

Consider Turing Machines that accept languages over alphabet {*a*}

They are countable:

 $M_1, M_2, M_3, M_4, \dots$

Example language accepted by M_i $L(M_i) = \{aa, aaaa, aaaaaaa\}$ $L(M_i) = \{a^2, a^4, a^6\}$ Alternative representation $\begin{vmatrix} a^1 & a^2 & a^3 & a^4 & a^5 & a^6 & a^7 & \cdots \end{vmatrix}$ $L(M_i) = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 &$

	a^1	<i>a</i> ²	<i>a</i> ³	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists of the 1's on the diagonal

	a^1	<i>a</i> ²	a^3	a^4	• • •			
$L(M_1)$	0	1	0	1	• • •			
$L(M_2)$	1	0	0	1	• • •			
$L(M_3)$	0	1		1	• • •			
$L(M_4)$	0	0	0		• • •			
$L = \{a^3, a^4, \ldots\}$								

Consider the language L

$$L = \{a^i : a^i \in L(M_i)\}$$

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

L consists from of 0's on the diagonal

Theorem: Language \overline{L} is not recursively enumerable.

 $L(M_k) = L$

 a^{2} $L(M_1)$ 0 $L(M_2)$ $L(M_3)$ 0 $L(M_4)$ 0 0 () $a^1 \in L(M_k)$ 78 $M_k \neq M_1$ Answer: $a^1 \notin L(M_1)$

 a^{2} $L(M_1)$ 0 $L(M_2)$ $L(M_3)$ 1 0 $L(M_4)$ 0 0 () $a^2 \in L(M_k)$ $a^2 \notin L(M_2)$ 80 Answer: $M_k \neq M_2$

 a^{\dagger} $L(M_1)$ 0 $L(M_2)$ $L(M_3)$ 0 $L(M_4)$ 0 () $a^3 \notin L(M_k)$ $a^3 \in L(M_3)$ 82 $M_k \neq M_3$ Answer:

Similarly: $M_k \neq M_i$ for any *i*

Or

Because either:

$$a^{i} \in L(M_{k})$$
$$a^{i} \notin L(M_{i})$$

$$a^{i} \notin L(M_{k})$$
$$a^{i} \in L(M_{i})$$

Therefore the machine

CONTRADICTION!!!

The language *L* is not recursively enumerable.

End of proof

Observation:

There is no algorithm that describes \overline{L}

(otherwise it would be accepted by a Turing Machine)

A LANGUAGE WHICH IS RECURSIVELY ENUMERABLE AND NOT RECURSIVE

86

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is recursively enumerable but not recursive.

Theorem:

The language $L = \{a^i : a^i \in L(M_i)\}$

is recursively enumerable

89

Proof: We will give a Turing Machine that accepts L

Turing Machine that accepts L

For any input string W

- Write $w = a^i$
- Find Turing machine M_i

 (using the enumeration procedure for Turing Machines)
- Simulate M_i on input a^i

• If M_i accepts, then accept wEnd of proof

Observation:

Recursively enumerable $L = \{a^i : a^i \in L(M_i)\}$

Not recursively enumerable $\overline{L} = \{a^i : a^i \notin L(M_i)\}$

(Thus, not recursive)

Theorem:

The language
$$L = \{a^i : a^i \in L(M_i)\}$$

is not recursive.

Proof:

Assume on the contrary that *L* is recursive.

Then *L* is recursive:

Take the Turing Machine M that accepts L

M halts on any input

If *M* accepts then reject If *M* rejects then accept

Therefore: L recursive But we know: L not recursively enumerable thus, not recursive **CONTRADICTION!** Therefore, L is not recursive End of proof

95

